Thermal properties of armour steel protac 600

Matic Lešnjak1,2, *Borut Kosec1,3, Blaž Karpe1, Goran Janjić4, Mirko Gojić5, Jure Bernetič6, Gorazd Kosec2

1University of Ljubljana, Faculty of Natural Sciences and Engineering, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia
2SI ACRONI d.o.o., c. Borisa Kidriča 44, 4270 Jesenice, Slovenia
3University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
4University of Banja Luka, Faculty of Mechanical Engineering, vl. S. Stepanovića 71, 78000 Banja Luka, BiH
5University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, 44103 Sisak, Croatia
6SAAT d.o.o., na Lipce 4, 4260 Bled, Slovenia

ABSTRACT

Steels from the group PROTAC are distinguished by good mechanical properties and excellent armour properties even at small thicknesses. The mechanical properties of PROTAC 600 steel are known, while data on thermal properties (thermal conductivity, specific heat and temperature conductivity) are not available, so in the frame of our work we determined its thermal properties.

As the first part of the work, a study and evaluation of the operation of the device for determining the thermal properties of Hot Disk TPS 2200, today one of the more modern and high-quality instruments for determining thermal properties.

In the second part of the work, we performed measurements of thermal properties in accordance with the standard ISO 22007-2 at ambient temperature. The values of thermal properties of PROTAC 600 steel at ambient temperature (approximately 22 °C) are: thermal conductivity 28.69 W/mK, specific heat 3.94 MJ/m3K, and temperature conductivity 7.29 mm2/s. We found that steel PROTAC 600 has more than 10% higher heat conductivity in comparison with the steel of previous generation PROTAC 500.

Key words: armour steel, properties, thermal properties, measurements;

1. INTRODUCTION

Steel PROTAC 600 is the last generation of the steels from the family PROTAC. It belongs to the group of high strength low alloy (HSLA) steels. It is made in Slovenian steelwork ACRONI d.o.o. by the standard industrial procedures, and the relevant mechanical properties are achieved by quenching and tempering.

The selection of the appropriate armored material is crucial to ensure the adequate safety and mobility transport systems [1]. When selecting or developing the appropriate materials for the armor it is necessary to achieve the best possible compromise between the required mechanical properties of materials, minimizing the density and the final price of the product [2]. With the appropriate production technology, which includes synthesis, hot forming, heat treatment, etc. [3, 4] high strength low alloy steel of good functional properties at affordable prices can be produced.

By improving the strength and toughness of the steel the required thickness and the weight of the steel shell is reduced. Such steels are competitive to other materials for the armor [5].

2. BASIC MATERIAL PROPERTIES

Basic material properties of the armour steel PROTAC 600 are still well known. Chemical composition of the armour steel PROTAC 600 is represented in Table 1, mechanical properties are collected in Table 2, and microstructure is represented in Fig.1.

Tab.1 Chemical composition of steel PROTAC 600

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass %</td>
<td>0.42</td>
<td>1.00</td>
<td>0.80</td>
<td>0.02</td>
<td>0.003</td>
<td>1.3</td>
<td>3.50</td>
</tr>
<tr>
<td>M</td>
<td>0.50</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Corresponding author’s e-mail: borut.kosec@omm.ntf.uni-lj.si
Published by the University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia.
This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions
Tab.2 Mechanical properties of steel PROTAC 600

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>6.5 – 60 mm</td>
</tr>
<tr>
<td>Hardness</td>
<td>570 – 650 HB</td>
</tr>
<tr>
<td>Yeald strength $R_{p0.2}$</td>
<td>1500 MPa</td>
</tr>
<tr>
<td>Tensile strength R_m</td>
<td>2100 MPa</td>
</tr>
<tr>
<td>Elongation A_5</td>
<td>9 %</td>
</tr>
<tr>
<td>Impact toughness (at testing temperature - 20 °C)</td>
<td>20 J</td>
</tr>
</tbody>
</table>

![Fig. 1 Martensitic microstructure of steel PROTAC 600 (SEM)](image)

3. THERMAL PROPERTIES

In our research, we used one of the most advanced instruments for determining the thermal properties, Hot Disk TPS 2200, a product of Hot Disk AB company, Gothenburg, Sweden (Figure 2) [6].

![Fig. 2 Instrument Hot Disk TPS 2200](image)

The instrument can be used for determining thermal properties of various materials including pure metals, alloys, minerals, ceramics, plastics, glasses, powders and viscous liquids with thermal conductivity in the range from 0.01 to 500 W/mK, thermal diffusivity from 0.01 to 300 mm²/s and heat capacity up to 5 MJ/m³K. Measurements can be performed in a temperature interval between -50 °C up to 750 °C.

![Fig. 3 Measuring sensor sandwiched between two halves of a sample during measurement](image)

Hot disk measuring method is a transient plane source technique (TPS). Based on the theory of TPS, instrument utilizes a sensor element in the shape of 10 μm thick double spiral (Figure 3), made by etching from pure nickel foil. Spiral is mechanically strengthened and electrically insulated on both sides by thin polyimide foil (Kapton® Du Pont) for measurements up to 300 °C or mica foil for measurements up to 750 °C (Figure 4).

![Fig. 4 Sensor element (yellow-Kapton, gray-Mica)](image)

Sensor acts both as a precise heat source and resistance thermometer for recording the time dependent temperature increase. During measurement of solids, encapsulated Ni-sensor is sandwiched between two halves of the sample and constant precise pre-set heating power is released by the sensor, followed by 200 resistance recording in a pre-set measuring time, from which the relation between time and temperature change is established. Based on time dependent temperature increase of the sensor, thermal properties of the tested material are calculated.
3.1 Experimental work

Measurements and analysis of thermal properties of testing samples from the steel PROTAC 600 (Fig. 5) were performed in accordance with ISO 22007-2 standard [7] in the Laboratory for Thermotechnical Measurements, Faculty of Natural Sciences and Engineering, University of Ljubljana.

In Fig. 6 are presented results of thermal properties measurements.

In Table 3 are presented thermal properties (thermal conductivity, specific heat and temperature conductivity) of steel PROTAC 600 and steel PROTAC 500 (basic, main steel quality from the group PROTAC) [8, 9] at ambient temperature (approx. 22°C).

<table>
<thead>
<tr>
<th>Steel</th>
<th>PROTAC 600</th>
<th>PROTAC 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity</td>
<td>28.69 W/mK</td>
<td>25.61 W/mK</td>
</tr>
<tr>
<td>Specific heat</td>
<td>3.94 MJ/mK</td>
<td>3.76 MJ/mK</td>
</tr>
<tr>
<td>Temperature conductivity</td>
<td>7.28 mm²/s</td>
<td>6.81 mm²/s</td>
</tr>
</tbody>
</table>

4. Conclusions

Steels from the group PROTAC are distinguished by good mechanical properties and excellent armour properties even at small thicknesses. The mechanical properties of PROTAC 600 steel are known, while data on thermal properties (thermal conductivity, specific heat and temperature conductivity) were not available, so in the frame of this work its thermal properties were determined. As the first part of the work, a study and evaluation of We performed measurements of thermal properties in accordance with the standard ISO 22007-2 at ambient temperature. The values of thermal properties of PROTAC 600 steel at ambient temperature (approximately 22 °C) are:

- thermal conductivity 28.69 W/mK,
- specific heat 3.94 MJ/mK, and
- temperature conductivity 7.29 mm²/s.

We found that steel PROTAC 600 has more than 12% higher heat conductivity in comparison with the steel previous generation steel PROTAC 500.
ACKNOWLEDGEMENT

The authors want to thank professor Ladislav Kosec (University of Ljubljana), dr. Slavko Ažman (ACRONI d.o.o.), professor Franc Vodopivec (Institute of Metals and Technology), dr. Milan Rimac (Metallurgical Institute K. Kapetanovic Zenica), and professor Anton Smolej (University of Ljubljana) for mentorship at study armoured steels.

REFERENCES

NOTE

This paper is based on the paper presented at 15th International Conference on Accomplishments in Mechanical and Industrial Engineering – DE MI 2021, organized by University of Banja Luka, Faculty of Mechanical Engineering, in Banja Luka, Bosnia & Herzegovina, May 2021.